Non-native Co-, Mn-, and Ti-oxyhydroxide nanocrystals in ferritin for high efficiency solar energy conversion.

نویسندگان

  • S D Erickson
  • T J Smith
  • L M Moses
  • R K Watt
  • J S Colton
چکیده

Quantum dot solar cells seek to surpass the solar energy conversion efficiencies achieved by bulk semiconductors. This new field requires a broad selection of materials to achieve its full potential. The 12 nm spherical protein ferritin can be used as a template for uniform and controlled nanocrystal growth, and to then house the nanocrystals for use in solar energy conversion. In this study, precise band gaps of titanium, cobalt, and manganese oxyhydroxide nanocrystals within ferritin were measured, and a change in band gap due to quantum confinement effects was observed. The range of band gaps obtainable from these three types of nanocrystals is 2.19-2.29 eV, 1.93-2.15 eV, and 1.60-1.65 eV respectively. From these measured band gaps, theoretical efficiency limits for a multi-junction solar cell using these ferritin-enclosed nanocrystals are calculated and found to be 38.0% for unconcentrated sunlight and 44.9% for maximally concentrated sunlight. If a ferritin-based nanocrystal with a band gap similar to silicon can be found (i.e. 1.12 eV), the theoretical efficiency limits are raised to 51.3% and 63.1%, respectively. For a current matched cell, these latter efficiencies become 41.6% (with an operating voltage of 5.49 V), and 50.0% (with an operating voltage of 6.59 V), for unconcentrated and maximally concentrated sunlight respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Dye-Sensitized Solar Cells Using Native and Non-Native Nanocrystals in Ferritin as the Dye

Recent studies have demonstrated the potential of different nanocrystals synthesized in ferritin to act as light harvesters for high-efficiency solar cells. This study investigates the possibility of using these nanocrystals as alternative dyes for dye-sensitized solar cells. Four different dye-sensitized solar cells were successfully fabricated using iron, cobalt, manganese, and lead-sulfide n...

متن کامل

Simple Synthesis of In2S3 Nanoparticles and their Application as Co-sensitizer to Improve Energy Conversion of DSSCs

This paper describes synthesis of In2S3 nanoparticles by sonochemistry method and their application to enhance solar cells performance which In2S3 nanoparticles work as co-sensitizer for the first time. In2S3 is a narrow band gap semiconductor (2 eV) with conduction band higher than TiO2. Therefore it can transfer electron to the conduction band of TiO2. The effect of different parameters such ...

متن کامل

Modeling, Optimization and exergoeconomic analysis a multiple energy production system based on solar Energy, Wind Energy and Ocean Thermal Energy Conversion (OTEC) in the onshore region

In the present study, investigated an energy production system using three types of renewable energy: solar, wind and ocean thermal energy with climatic conditions and close to areas with high potential for the OTEC system, Has a good position in terms of wind speed and solar radiation, used them as energy sources. The proposed system is designed and evaluated based on the total daily electrici...

متن کامل

Synthesis of anatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells.

Single crystalline anatase TiO(2) rods with dominant reactive {010} facets are directly synthesized by hydrothermally treating Cs(0.68)Ti(1.83)O(4)/H(0.68)Ti(1.83)O(4) particles. The nanosized rods show a comparable conversion efficiency in dye-sensitized solar cells (DSSCs), and a superior photocatalytic conversion of CO(2) into methane to the benchmark P25 TiO(2) nanocrystals.

متن کامل

Plasmonic Solar Cells, a New Way to Enhance Energy Conversion Efficiency: Analysis and Modeling of Effect of Metal Geometry

In this article, the effect of plasmonic properties of metal nanoparticles with different shapes, and moreover, their plasmonic-photonic interaction, on solar cell performance were investigated and simulated. Because of low conversion efficiency and then high cost of solar cells, it is difficult to commercialize and replace them with conventional energy resources. But in recent years, the plasm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 26 1  شماره 

صفحات  -

تاریخ انتشار 2015